快速发布求购| | | | | 加微群|
关注我们
本站客户服务

线上客服更便捷

仪表网官微

扫一扫关注我们

|
客户端
仪表APP

安卓版

仪表手机版

手机访问更快捷

仪表小程序

更多流量 更易传播


您现在的位置:仪表网>元素分析>资讯列表>科学岛团队提出一种基于多尺度空间特征的水下图像增强方法

科学岛团队提出一种基于多尺度空间特征的水下图像增强方法

2024年01月15日 09:58:25 人气: 13028 来源: 合肥物质科学研究院 作者:郑世健 汪六三
  【仪表网 研发快讯】近日,中国科学院合肥物质院智能所智慧农业研究中心王儒敬研究员团队提出了一种基于多尺度空间特征的水下图像增强方法。相关研究成果发表在计算机科学领域期刊 Journal of King Saud University - Computer and Information Sciences 上。
 
  水下图像的高质量获取一直是渔业监测、环境保护及物种保护等领域的关键技术难题。水下图像往往呈现出模糊、色彩失真等问题,严重影响了图像的可用性和后续分析的准确性。近年来,虽然深度学习技术在图像增强领域取得了显著进展,但大多数现有方法对于计算资源和内存的需求较高,难以在水下设备平台上有效应用。为了解决这个问题,团队提出了一种名为多尺度特征调制网络(MFMN)的新方法,以更好地实现模型效率和重构性能之间的权衡。具体来说,科研团队在一个类似于视觉变压器(VIT)的模块上开发了一个多尺度调制模块,在该模块中使用多尺度空间特征模块提取输入图像的特征,动态选择图像特征空间中的代表性特征;此外,由于多尺度空间特征模块从图像的空间角度来处理图像特征缺乏通道特征信息,团队进一步引入了通道混合模块来执行通道混合。
 
  实验结果表明,该方法在网络参数方面比目前最先进的水下图像增强方法要小8.5倍,同时实现了基本相同甚至更优的图像增强效。这意味着,在保持高性能的同时,该方法显著降低了对计算资源的需求,为水下图像增强技术的实际应用提供了新的可能性。
 
  郑世健博士生为论文第一作者,汪六三副研究员为论文通讯作者。该项研究工作得到了国家自然科学基金、国家重点研发计划的支持。
 
图1 MFMN网络结构
 
关键词: 水下图像
全年征稿/资讯合作 联系邮箱:ybzhan@vip.qq.com
版权与免责声明
1、凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
2、本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
3、如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
4、合作、投稿、转载授权等相关事宜,请联系本网。
联系我们

客服热线: 0571-87759942

加盟热线: 0571-87756399

媒体合作: 0571-87759945

投诉热线: 0571-87759942

关注我们
  • 下载仪表站APP

  • Ybzhan手机版

  • Ybzhan公众号

  • Ybzhan小程序